If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+39t-125=0
a = 4.9; b = 39; c = -125;
Δ = b2-4ac
Δ = 392-4·4.9·(-125)
Δ = 3971
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3971}=\sqrt{361*11}=\sqrt{361}*\sqrt{11}=19\sqrt{11}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-19\sqrt{11}}{2*4.9}=\frac{-39-19\sqrt{11}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+19\sqrt{11}}{2*4.9}=\frac{-39+19\sqrt{11}}{9.8} $
| 10y-12=37+75= | | 10y-12+37=75 | | 10y-12=37=75 | | 10y-12=37=35 | | 13x-23-9x+3=90= | | 5y+3+3y-1=90 | | 25x^2-134x+161=0 | | -3.5x=0 | | F(-3)=3x-19 | | 6x-4+2(5x+2)=26x | | 10x-(7x-5)=20 | | 2x+18+x-6=90 | | 6x+7+119=180 | | 3x+6+3x+12+6x=90 | | 3x6+3x+12+6x=90 | | M=15n=300 | | 3x+6+3x+12+6x=30 | | y-93=16 | | 3a-5/a=4 | | 2a=1/2a+21 | | 125x=1/5 | | 91=1/2(12x7)(12+B) | | 2^2x+1+9*2^x+4=0 | | 105=3.a | | (4x+8)+(2x-5)=39 | | -18+3z+23-19z+7z=0 | | 23x-12=6x+5 | | 55x+20=75x | | 7.3-n=1.3 | | Y-5=3x+2 | | 40-3d=10 | | 4n-49=7(-2n+2 |